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Abstract. The representations currently used by local search and some
evolutionary algorithms have the disadvantage that these algorithms are
partially blind to “ridges” in the search space. Both heuristics search and
gradient search algorithms can exhibit extremely slow convergence on
functions that display ridge structures. A class of rotated representations
are proposed and explored; these rotated representations can be based
on Principal Components Analysis, or use the Gram-Schmidt orthogo-
nalization method. Some algorithms, such as CMA-ES, already make use
of similar rotated representations.

1 Introduction

Various genetic algorithms and local search methods are more or less blind to
“ridges” in the search space of parameter optimization problems. In two dimen-
sions, the ridge problem is essentially this: a method that searches north, south,
east and west will not see improving moves that are oriented at a 45 degree angle
in the search space.

The ridge problem is relatively well documented in the mathematical liter-
ature on derivative free minimization algorithms [1,2]. However, there is little
discussion of this problem in the heuristic search literature. Our exploration of
the “ridge problem” was motivated by three concerns.

First, over the last few years experiments have shown that genetic algorithms
are more sensitive to local optima induced by different bit representations than
was previously believed. Until recently, much of this work has focused on how
representations such as Gray codes destroy local optima [3]. Our work focuses
on when Gray codes create new optima: this happens only along ridges.

Second, some algorithms have semi-random behaviors that don’t seem to
make any sense from either a theoretical or intuitive perspective, and yet they
work relatively well on certain benchmarks. What we now believe is that these
“weaker” algorithms are sometimes better able to avoid becoming trapped on
ridges.

Third, we have been working on real world applications for computing in-
verses for prediction problems in weather and geophysics. However, we have
found that genetic algorithms and evolution strategies do not work on these in-
verse problems. We now know that there are ridges in these search spaces that
induce “false” optima in the representation spaces, or ridges otherwise slow down
the progress of search.
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2 Local Optima and Ridges under Gray Encoding

Let Ω = {0, 1, . . . , 2� − 1} be the search space which can be mapped onto a
hypercube. Elements x, y ∈ Ω are neighbors when (x, y) is an edge in the hy-
percube. Bit climbing search algorithms terminate at a local optimum, denoted
by x ∈ Ω, such that none of the points in the neighborhood N(x) improve upon
x when evaluated by some objective function. Gray codes are often used for bit
representations because, by definition, adjacent integers are adjacent neighbors.

Let the objective function be defined on the unit interval 0 ≤ x < 1. We
discretize the interval by selecting n points. The natural encoding is then a map
from Ω to the graph that has edges between points x and x + 1 for all x =
0, 1, . . . , n−2. Under a Gray encoding adjacent integers have bit representations
that are Hamming distance 1 neighbors which results in the following property.

Theorem 1. A function f : Ω → IR cannot have more local optima under Gray
encoding than it does under the natural encoding.

Under a Gray code, local optima of the objective function considered as a
function on the unit interval can be destroyed, but no new local optima can be
created. In particular if a function is unimodal under the natural encoding, it is
unimodal under Gray code.

But are there unimodal functions where the natural encoding is multimodal?
If the function is 1-dimensional, the answer is no. But if the function is not
1-dimensional, the answer is yes. “False” local optima are induced on ridges.

A simplified ridge problem appears in Figure 1. Changing one variable at
a time will move local search to the diagonal. However, looking in either the
x-dimension or the y-dimension, every point along the diagonal appears to be
a local optimum. There is actually gradient information if one looks along the
diagonal; however, this requires either 1) changing both variables at once, or 2)
transforming the coordinate system of the search space so as to “expose” the
gradient information.

This limitation is not unique to local search, and it is not absolute for ge-
netic algorithms. Any method that searches 1-dimension at a time has the same
limitation, including local search as well as simple “line search” methods.

Fig. 1. Local search moves only in the horizontal and vertical directions. It therefore
“finds” the diagonal, but becomes stuck there. Every point on the diagonal is locally
optimal. Local search is blind to the fact that there is gradient information moving
along the diagonal.
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A genetic algorithm is not absolutely trapped by ridges. Early population
sampling of schema can allow the search to avoid being trapped by “ridges.” But
genetic algorithms quickly lose diversity and then the search must use mutation
or otherwise random jumps to move along the ridge. For example, simple 1-
point crossover inherits “fixed but mixed” parameters from parents for the most
part. That is, the inherited parameters come directly from the parents without
changes except for one parameter that is broken by crossover. Uniform crossover
would seem to have the ability to move along ridges: every bit is independently
inherited from the 2 parent structures. But Syswerda [5] points out that when
using uniform crossover, bits that are common between the two parents are
inherited and all non-common bits are randomly reset because 0 or 1 is randomly
inherited. So the ability of uniform crossover to move along ridges may be no
better than that of random mutation.

Kazadi motivated a representation for genetic algorithms called a conjugate
schema. Kazadi asserts that sometimes crossover disrupts the efficiency of a real-
valued genetic algorithm by producing low fitness offspring. Kazadi proposed a
new basis, called a conjugate schema, that minimizes the functional dependen-
cies between the parameters of the objective. This basis creates local separability
in the objective function and, hopefully, allows parents to cross with a higher
likelihood of strong children. Kazadi uses the eigenvectors of the absolute Hes-
sian matrix to find optimal basis. As noted by the author, “this adaptation is
curiously successful on our test functions” [6]. One practical problem is that
Hessians require twice differential functions that are difficult to compute.

Wyatt and Lipson [7] take a more “linkage” theoretic view of the crossover
problem to arrive at similar conclusions. Genetic linkage is a measure of the
correlation between functional dependency and gene location. Representations
with high linkage will push separable parts of the problem together, and these
parts will become useful building blocks for genetic search. In order to find an
optimal gene ordering, Wyatt and Lipson also use the eigenvectors of the Hessian
around the current best point, and use this ordering for the entire population.

Neither of these studies were concerned with mutation or the direction of the
gradient. The proposed ideas may indeed be useful, but these studies take a very
narrow view of how the representation is being changed. However, work starting
with Salomon, and more recently work on the CMA-ES algorithm, focuses on
rotations and concerns about search direction and step size.

Salomon [8] showed that most benchmarks become much more difficult when
the problems are rotated. Searching a simple 2-D eliptical bowl is optimally
solved by one iteration of line search when the ellipse is oriented with the x and
y axis. But when the space is rotated 45 degrees (or my some random value),
the bowl becomes a ridge and the search problem is more difficult for many
search algorithms. Salomon showed that some genetic algorithms, such as the
Breeder Genetic Algorithm [9], had been tuned to behave much like line search,
largely moving in one dimension at a time. This allows O(N ln N) convergence
proofs using the assumption that the search problem is decomposable into N
subproblems and solved in a piecewise fashion [9].
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Salomon points out that Evolution Strategies are invariant under rotation.
But being invariant under rotation and being able to exploit ridge structures
is not quite the same. Oyman et al. [10] show that Evolution Strategies also
“creep” on ridge functions. The problem occurred when a (1+10)ES was used
for a simple parabolic ridge problem with a 1/5 rule to adjust the step size.
Longer jumps in the search space result in poorer evaluation near the ridge.
Thus, the adaptive mutation mechanism reduces the step size, until finally the
algorithm also creeps along the ridge.

2.1 Benchmarks, Ridges, and Direct Search Methods

Common benchmarks contain a couple of problems with “ridges” features. Fig-
ure 2 shows 2-D illustrations of 2 benchmarks. F2 from the De Jong test suite [11]
is relatively easy, while the “Rana” function is difficult. F2 was created specif-
ically by Rosenbrock around 1960 to illustrate the weakness of methods which
change only one variable at a time during search. Rosenbrock showed that even
gradient methods move very slowly on this function because the direction of the
gradient significantly changes at each time step.

Rosenbrock proposed a search method that uses the Gram-Schmidt orthog-
onalization algorithm to adapt the search coordinate system. Later the Nelder-
Mead Simplex method was introduced [12], in part to deal with this problem.
These methods often compute a direction of improvement based on a sample
of points; then, line-search type methods are often used to look for improving
moves. In theory, these methods should be able to follow ridge structure if they
select the correct direction. The potential disadvantage of these methods is that
they heuristically compute a direction based on very little information.

One of the fundamental problems that is encountered when trying to compare
direct search methods, local search methods, and even different evolutionary
algorithms, is the representation and precision used for constructing the search
space.

Genetic algorithms and local search (e.g., the Random Bit Climber (RBC)
[13]) tend to use low precision bit encodings. Evolution Strategies and direct
search methods such as Nelder-Mead use high precision, real-valued representa-
tions. The search community has long struggled with the debate over which is
better, bit representations or real-valued representations? Unfortunately, differ-
ent experiments seem to support different conclusions, even when compared on
the same test functions. This seems odd and confusing.

Recent work suggests that the choice of real-valued versus bit encodings may
not be nearly as important as the level of precision. Precision can dramati-
cally change the rate of convergence. One of the potential advantages of using
bit encoding is that they can use lower precision for many applications and
achieve faster convergence compared to real-valued encodings. This also makes
comparing real-valued representations and bit encoded representations difficult.
However, forcing the bit encodings and real-valued encoding to use 32 bit preci-
sion just to make them the same is probably not a reasonable solution: precision
matters.
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Fig. 2. The leftmost figure is F2 from the De Jong Test Suite, also known as Rosen-
brock’s banana function. The middle figure is F102, or Rana’s function. The rightmost
figure is a cartoon showing the “ridges” that lead to the global optimum as well as
other competitive local optima.

2.2 Local Search, Ridges, and Precision

We ran a Steepest Ascent Bit Climber on the F2 and Rana test problems at 10
and 20 bits. Results are shown in table 1. The number of steps required to reach
a local optimum jumps from about 200 steps under local search at 10 bits of
precision to 200,000 or more steps at 20 bits of precision.

As shown in Figure 2, both of these functions have ridge like properties.
Search must move toward the upper corners to find the global optimum, as well as
the better local optima. The behavior of local search on F2 is shown in Figure 3.
The first south to north move occurs in 1 step. The second west to east move
occurs in 1 step. The ridge is then encountered after 2 moves. Because the ridge
is not exactly at 45 degrees, local search is not completely blind and does not
stop. Instead, the ridge becomes a “staircase.” Local search makes the smallest
move possible and therefore “creeps.” The problem is exponentially worse at
high precision because the steps of the staircase are exponentially smaller.

Genetic algorithms are often used at 10 bits of precision. Genetic algorithms
at 20 bits of precision can be 10 to 100 times slower to converge using 20 versus
10 bits of precision.

Table 1. Results of steepest ascent bit climbing with 100 restarts at 10 and 20 bit
resolution. Results are averaged over 30 runs. Mean is calculated using the best of the
100 restarts. Steps is the average number of steps needed to reach a local optimum.

Function Precision Mean Std Steps Std

F2, 2-D 10-bits 0.001 0.002 235 30

F2, 2-D 20-bits 4×10−7 1×10−7 2×105 4×103

Rana, 2-D 10-bits -501.9 06.0 225 22

Rana, 2-D 20-bits -503.0 04.8 3×106 8×103
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Fig. 3. The “arrows” figure shows the approximate ridge location. The middle figure
tracks the movement of an actual run of local search on F2. After 2 moves the ridge
is encountered. The rightmost figure: adding 1 bit of precision doubles the number of
steps.

3 Ridges and Temperature Inversion

The temperature inversion problem is an atmospheric science application that
involves searching for 43 temperatures which produce a set of radiance observa-
tions using a forward model.

MODEL(temperature.vector) −→ radiance.observations

Figure 4 is a 2-D slice taken from the temperature inversion problem in the area
around the global optimum. There is a distinct ridge. The companion image
shows the location of “false” local optima under Gray code: no improving exists
in the x or y dimension. There are a surprising number of false local optima that
trap local search. Such ridges occur throughout the search space and respond to
the nonlinear interaction between variables: changing a parameter in dimension
x simultaneously changes the location of the ridge in many other dimensions.

Empirical results show that many evolutionary algorithms are trapped in
local optima at about the same rate as local search, including a Steepest Ascent

Fig. 4. On the left is a 2-D slice near the global optimum of the 43-D temperature
inversion problem. The points in the rightmost figure shown where “false” local optima
occur.
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Table 2. Results of steepest ascent bit climbing (SABC) and a rotated local search
method. No restarts were used in these experiments. Mean is the mean best over 30
experiments, and best is the best of the 30 experiments.

Functions Search Best Mean Std Steps Std Evals Std

SABC +4.5E-07 +5.4E-07 +1.2E-07 6,193 814 247,710 32,541
F2

PCA SABC +3.1E-10 +2.5E-07 +2.5E-07 138 58 7,603 3,189

SABC -510 -417 87 208 321 8,305 12,822
Rana

PCA SABC -511 -480 24 23 6 1,262 341

Bit Climber, CHC, a (30,210)ES and a (30+210)ES with standard mutation
adaptations and no rotations, PBIL and Differential Evolution.

4 Rotating Search Coordinates

One way to deal with ridges in the search space is to change the search coordi-
nates. One way to do this is to use a rotated representation. Evolution Strategies
use a heuristic rotation by adapting a set of rotation strategy parameters via evo-
lution [14]. However, adapting rotation “strategy” parameters of the form used
by Evolution Strategies is too imprecise and impractical for large problems.

A standard way of computing a rotation is to use Principal Component Anal-
ysis. Given a data set of sample points, an eigenvalue/eigenvector decomposition
is performed. The eigenvectors are represented by a rotation matrix R. Let Λ be
the diagonal eigenvalue matrix. Let X represent a matrix of data vectors. Using
PCA we find R and Λ such that

R · XXT = ΛR

For a single search point represented by the vector x we compute xR, which is
the projection of the point x into the space defined by R. The rotation matrix
is orthonormal, so a simple correction is also needed to translate and re-center
the rotation during search.

To find a structure such as a ridge, PCA can be used to sample locally
and isolate a subset of the better sample points. For example, sample 20 points
and then apply PCA analysis to the 10 best solutions. While this can give a
correct rotation, the direction of maximal variance might be in the direction
of the gradient if the samples are on a ridge, or the maximal variance may be
orthogonal to the gradient if the sample is drawn from a sloping plateau.

Another approach is to use the Gram-Schmidt (GS) orthogonalization algo-
rithm to rotate the space. Often the Gram-Schmidt algorithm is used to con-
struct a representation that is orthogonal with respect to two points in the
search space–such as the best two points seen so far. This is a heuristic way of
determining a useful “rotation” for changing the problem representation.



Ruffled by Ridges: How Evolutionary Algorithms Can Fail 301

In Table 2 Steepest Ascent Bit Climbing (SABC) with a Gray Code repre-
sentation is compared with SABC using PCA to rotate the search space. For the
PCA, 15 points were sampled, with PCA applied to the best 8. The speed-up is
dramatic using rotated representations.

5 Constructing Higher Dimensional Test Problems

We have found that there are no good test functions that are difficult and which
also scale up to higher dimensions. Researchers have rotated existing test func-
tions to make them more difficult. But there still exists a single rotation that
converts the problem back into a relatively easy problem; and this does nothing
to address scalability.

Functions with two variables are often scaled to higher dimensions using
an expansion function. Different expansion functions have different properties.
Sometimes subfunctions are added together with no interactions between sub-
functions. The problem here is the linear combination of subfunctions results
in a test problem that is separable when there are no interfunction interactions
between the parameters. Specifically, it is possible to optimize each component
(e.g., f(x1, x2)) independently of the other parameter values.

Expansion functions that create non-separable problems are often generalized
in the following way:

Expansion Method 1: f(x) =
n−1∑

i=1

f(xi, xi+1)

However, the symmetry that exists in this function can make some problems eas-
ier to solve in higher dimensions. Figure 5 (topmost) shows the two dimensional
slices taken from the three dimensional Rosenbrock function when generalized in
this way. In general, the surfaces are not as difficult as the original Rosenbrock
function, and the problem becomes much easier in higher dimensions. In order
to retain the original ridge structure, the following expansion can be used:

Expansion Method 2: f(x) =
�n/2�∑

i=1

f(x2i−1, x2i) +
�(n−1)/2�∑

i=1

f(x2i+1, x2i)

This creates a non-separable, higher dimension problem that preserves the
ridge features of the original problem. Figure 5 (bottom) illustrates using Expan-
sion Method 2 to create the three dimensional Rosenbrock function. The first two
slices retain the long narrow ridge that characterizes the Rosenbrock function.
The interaction between parameters one and three creates a multimodal surface
from which it is difficult for a coordinate strategy to escape. This same pattern
extends to slices of 5 and 10 dimensional functions contructed using Expansion
Method 2: more of the features that make the primitive 2-D function difficult
are preserved in the expanded functions.
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Fig. 5. Results of expanding Rosenbrock’s function in three dimensions using Expan-
sion Method 1 are shown in the top 3 slices of the space: with the possible exception of
the first slice, the search space is simpler and easier than the original problem. Results
of expanding Rosenbrock’s function in three dimensions using Expansion Method 2 are
shown in the bottom 3 slices of the space: the first two slices retain the long narrow
ridge and the third slice is a multimodal surface.

We applied the local search SABC algorithm with and without a PCA ro-
tated representation to 5-D and 10-D versions of Rosenbrock’s banana function
(F2) and the Rana function. We also ran a 10-D temperature inversion problem
looking for temperature for the first 10 kilometers of the atmosphere. PCA was
applied after every step, which adds to the number of evaluations. The number
of steps taken during search is 5 to 10 times less under SABC with PCA com-
pared to the non-rotated representations on the 5-D problems. The number of
steps is 2 to 3 times less under SABC with PCA compared to the non-rotated
representations on the 10-D problems. Using a rotated representation is more
effective on F2 than Rana. This may be because the ridge is the only thing that
makes F2 difficult, while Rana is also extremely multimodal. There is a clear
advantage using PCA on the 5-D problems; the advantage is less clear at 10-D
for Rana. For the 10-D temperature problem, using PCA significantly reduces
both the error and the number of evaluations.



Ruffled by Ridges: How Evolutionary Algorithms Can Fail 303

Table 3. The results of applying local search SABC with and without PCA rotated
representations on 5-D and 10-D versions of the Rana and F2 functions using Expansion
Method 2. At 5-D, PCA used the best half of 40 samples; at 10-D PCA used the best
half of either 80 or 74 samples to compute rotations.

Function Search Best Mean Std Steps Std Evals Std

SABC 2.4E-06 2.4E-06 8.1E-08 11,663 1,415 1,166,268 141,503
F2, 5-D

PCA SABC 5.3E-07 2.4E-06 1.3E-06 1,057 177 148,042 24,800

SABC -386 -313 49 506 915 50,551 91,540
Rana, 5-D

PCA SABC -399 -310 42 112 167 15,662 23,318

Function Search Best Mean Std Steps Std Evals Std

SABC 5.9E-06 6.1E-06 1.3E-07 29,437 1,865 5,887,321 372,921
F2, 10-D

PCA SABC 3.8E-06 5.9E-06 2.2E-06 8,915 406 2,496,201 113,735

SABC -427 -354 40 758 940 151,628 187,959
Rana, 10-D

PCA SABC -411 -308 47 525 632 146,917 176,958

SABC 11,607 16,026 2,497 373 64 41,064 7,092
Temp, 10-D

PCA SABC 5,353 10,121 2,910 109 36 20,100 6,722

6 Discussion and Related Work

The goal of this paper is to highlight and explain the ridge problem and explore
the use of rotated representations. Rotated representations could be used in
conjunction with various types of evolutionary algorithms. And despite work
in this direction, most of the evolutionary computation field has not looked
seriously at rotated representations.

There is at least one algorithm that already makes extensive use of ro-
tated representations and has mechanisms to address some of the key questions
that arise when using rotated representations: Covariance Matrix Adaptation,
or CMA, rotates and scales the mutation operators used by an Evolution Strat-
egy. The key question is what kind of sample should be used when computing
rotations. If a localized sample is taken and then the best points (e.g., the best
half of the sample) are used to calculate the eigenvectors and eigenvalues, the
direction of maximum variance can be in the direction of the gradient or it can
be orthogonal to the gradient.

Recall that the Gram-Schmidt algorithm is often used to construct a repre-
sentation that is orthogonal with respect to two points in the search space–such
as the best two points seen so far. This kind of approach used less informa-
tion, but emphasizes knowledge about gradient based on the most recent move
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or moves. This is a more localized and heuristic way of determining a useful
“rotation” for changing the problem representation.

In effect, PCA exploits information about variance, whereas Gram-Schmidt
uses path information. The path information acts as a kind of “momentum”
term that keeps the search moving in it’s current direction. Simple empirical
experiments show that path information is most useful when approaching a
ridge, or when following a straight ridge. But path information is sometimes
misleading, for example on a curved ridge. On a curved ridge, calculating the
direction of maximum variance helps to track the changing gradient.

These ideas are already exploited by the CMA-ES algorithm.

6.1 CMA-ES

Traditional evolution strategies produce offspring based on adaptive strategy
variables that attempt to improve the likelihood of producing better offspring.
Strategy parameters are coded onto the chromosome along with the objective
parameters and are adapted indirectly based on the assumption that highly
fit individuals will carry better strategy parameters. The mutation strength of
the strategy parameters must be high enough to create significant differences be-
tween offspring while minimizing adaption time [15]. Ostermeier et al. attempted
to dampen the mutation strength without compromising adaption speed [16].
Hansen et al. offers a solution that completely removes the mutation strength
when adapting the strategy parameters [15]. Unfortunately, this solution cannot
be easily extended to other strategy parameters that control the angle of rota-
tion between each dimension, as necessary in correlated mutations. Without this
rotational adaptation, the algorithm’s success is limited on ridge functions.

Covariance Matrix Adaptation, or CMA, uses a covariance matrix to rotate
and scale the mutation distribution [15]. The covariance matrix is an estimate
based on the evolution path and, when applicable, information extracted locally
from strategies with large populations [17]. Hansen and Ostermeier define the
reproduction phase from generation g to generation g + 1 as:

x
(g+1)
k = 〈x〉(g)

µ + σ(g)B(g)D(g)z
(g+1)
k

where z
(g+1)
k are randomly generated from an N(0, I) distribution. This creates

a set of base points that are rotated and scaled by the eigenvectors (B(g)) and
the square root of the eigenvalues (D(g)) of the covariance matrix C. The single
global step size, σ(g), scales the distribution based on adaptation. Finally, the
points are translated to center around 〈x〉(g)

µ , the mean of the µ best parents of
the population.

Instead of only using a single generation to compute covariance, CMA-ES
utilizes the entire evolution path, called cumulation. The evolution path updates
at each generation using a weighted sum of the current evolution path, p

(g)
c , with

the vector that points from the mean of the µ best points in generation g to the
mean of the µ best points in generation g + 1. When a larger population (λ) is
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used, the best µ individuals may help describe the topology around the mean of
the current generation. This is potentially useful information. Assuming Z(g+1)

is the covariance of the µ best individuals, and P(g+1) is the covariance of the
evolution path, the new covariance matrix is:

C(g+1) = (1 − ccov)C(g) + ccov

(
αcovP(g+1) + (1 − αcov)Z(g+1)

)

Where ccov and αcov are constants that weight the importance of each input.

7 Conclusions

The CMA-ES algorithm has already raised interesting issues about how best to
implement Evolution Strategies. Traditionally an ES encodes O(N2) rotation
or covariance parameters onto the chromosome to be evolved along with the N
object parameters. Such rotations are simply not practical on large problems.
Empirical tests of the CMA-ES algorithm are very positive. The use of rotated
representations could produce a fundamental change in the theory and applica-
tion of Evolution Strategies. The use of rotated representations also needs to be
explored for a wider range of evolutionary algorithms.
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14. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University
Press (1996)

15. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9 (2001) 159–195

16. Ostermeier, A., Gawelczyk, A., Hansen, N.: A derandomized approach to self-
adaptation of evolution strategies. Evolutionary Computation 2 (1994) 369–380
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